| 1. | In this question you should show all stages of your working.            |
|----|-------------------------------------------------------------------------|
|    | Solutions relying entirely on calculator technology are not acceptable. |

| A company made a profit of £20 000 in its first year of trading, Year 1                                                                              |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| A model for future trading predicts that the yearly profit will increase by 8% each year, so that the yearly profits will form a geometric sequence. |     |
| According to the model,                                                                                                                              |     |
| (a) show that the profit for Year 3 will be £23328                                                                                                   | (1) |
| (b) find the first year when the yearly profit will exceed £65 000                                                                                   | (3) |
| (c) find the total profit for the first 20 years of trading, giving your answer to the nearest £1000                                                 |     |
| nearest £1000                                                                                                                                        | (2) |
|                                                                                                                                                      |     |
|                                                                                                                                                      |     |
|                                                                                                                                                      |     |
|                                                                                                                                                      |     |
|                                                                                                                                                      |     |
|                                                                                                                                                      |     |
|                                                                                                                                                      |     |
|                                                                                                                                                      |     |
|                                                                                                                                                      |     |
|                                                                                                                                                      |     |
|                                                                                                                                                      |     |
|                                                                                                                                                      |     |
|                                                                                                                                                      |     |
|                                                                                                                                                      |     |
|                                                                                                                                                      |     |
|                                                                                                                                                      |     |
|                                                                                                                                                      |     |
|                                                                                                                                                      |     |
|                                                                                                                                                      |     |
|                                                                                                                                                      |     |

**2.** Show that

$$\sum_{n=0}^{\infty} \left(\frac{3}{4}\right)^n \cos(180n)^\circ = \frac{9}{28}$$

| n=2 | (3) |
|-----|-----|
|     |     |
|     |     |
|     |     |
|     |     |
|     |     |
|     |     |
|     |     |
|     |     |
|     |     |
|     |     |
|     |     |
|     |     |
|     |     |
|     |     |
|     |     |
|     |     |
|     |     |
|     |     |
|     |     |
|     |     |
|     |     |
|     |     |
|     |     |
|     |     |
|     |     |
|     |     |
|     |     |
|     |     |
|     |     |

| 3. | In this question you                         | must show all                    | stages of       | your working.     |     |
|----|----------------------------------------------|----------------------------------|-----------------|-------------------|-----|
|    | Solutions relying on                         | calculator tec                   | hnology ar      | e not acceptable. |     |
|    | Given that the first three terms of a ge     | eometric series                  | are             |                   |     |
|    | $12\cos\theta$                               | $5 + 2\sin\theta$                | and             | $6 \tan \theta$   |     |
|    | (a) show that                                |                                  |                 |                   |     |
|    |                                              | $\sin^2\theta - 52\sin\theta$    | ± 25 = 0        |                   |     |
|    | 4                                            | SIII <i>0 - 32</i> SIII <i>0</i> | + 23 - 0        |                   | (3) |
|    | Given that $\theta$ is an obtuse angle measu | red in radians,                  |                 |                   | · , |
|    | (b) solve the equation in part (a) to fin    |                                  | lue of $\theta$ |                   |     |
|    | (e) sort and equation in pair (a) to in      |                                  |                 |                   | (2) |
|    | (c) show that the sum to infinity of the     | e series can be                  | expressed       | in the form       |     |
|    |                                              | $k(1-\sqrt{3})$                  | )               |                   |     |
|    |                                              | · · ·                            | •               |                   |     |
|    | where $k$ is a constant to be found.         |                                  |                 |                   | (5) |
|    |                                              |                                  |                 |                   |     |
|    |                                              |                                  |                 |                   |     |
|    |                                              |                                  |                 |                   |     |
|    |                                              |                                  |                 |                   |     |
|    |                                              |                                  |                 |                   |     |
|    |                                              |                                  |                 |                   |     |
|    |                                              |                                  |                 |                   |     |
|    |                                              |                                  |                 |                   |     |
|    |                                              |                                  |                 |                   |     |
|    |                                              |                                  |                 |                   |     |
|    |                                              |                                  |                 |                   |     |
|    |                                              |                                  |                 |                   |     |
|    |                                              |                                  |                 |                   |     |
|    |                                              |                                  |                 |                   |     |
|    |                                              |                                  |                 |                   |     |
|    |                                              |                                  |                 |                   |     |
|    |                                              |                                  |                 |                   |     |
|    |                                              |                                  |                 |                   |     |

| <b>4.</b> ′ | The fi | irst | three | terms | of | a | geometric | sec | quence | are |
|-------------|--------|------|-------|-------|----|---|-----------|-----|--------|-----|
|-------------|--------|------|-------|-------|----|---|-----------|-----|--------|-----|

$$3k + 4$$
  $12 - 3k$   $k + 16$ 

where k is a constant.

(a) Show that k satisfies the equation

$$3k^2 - 62k + 40 = 0$$

**(2)** 

Given that the sequence converges,

- (b) (i) find the value of k, giving a reason for your answer,
  - (ii) find the value of  $S_{\infty}$

**(5)** 

| <br> |
|------|
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |